最早出现的电化学气体传感器可以追溯到20世纪50年代,是用于检测氧气的,到了80年代中期,小型电化学气体传感器开始用于检测PEL范围内的多种不同的有毒气体,并显示出了良好的敏感性与选择性。目前,为保障人身安全,各种电化气体学传感器广泛应用于许多静态与移动应用场合。
电化学气体传感器是通过与被测气体发生反应并产生与气体浓度成正比的电信号来工作的。典型的电化学气体传感器由传感电极(或工作电极)和反电极组成,并由一个薄电解层隔开。
气体首先通过微小的毛管型开孔与传感器发生反应,然后是疏水屏障层,最终到达电极表面。采用这种方法可以允许适量气体与传感电极发生反应,以形成充分的电信号,同时防止电解质漏出传感器。
穿过屏障扩散的气体与传感电极发生反应,传感电极可以采用氧化机理或还原机理。这些反应由针对被测气体而设计的电极材料进行催化。
通过电极间连接的电阻器,与被测气浓度成正比的电流会在正极与负极间流动。测量该电流即可确定气体浓度。由于该过程中会产生电流,电化学传感器又常被称为电流气体传感器或微型燃料电池。
电化学就是研究电学和化学行为之间关系的学科。这个学科最重要的应用是电能与化学能之间的高效转换和大功率密度存储技术。
我们知道传感器表观上是信息种类、信息量的转换装置,如压力信息转换为电信息的压力传感器等。本质上传感器是一种能量转换装置,如压力传感器就是把机械能转换为电能的装置。
由此,很容易理解,电化学气体传感器就是一个电池,叫气体燃料电池。最常见的电池,把一堆可以导电的化学物质装起来,插入两个不同材料的电极,用导线连接就会有电产生。
以铅酸蓄电池为例,硫酸水溶液就是导电的化学物质,把铅放进其中,在铅和硫酸接触的地方(界面)会产生电,把氧化铅放进去,界面也会有电,两个界面电量有差异,即有电压,用导线连起来电子就会从铅流到氧化铅,铅就变成了氧化铅,氧化铅变成了氧化亚铅。电量和化学量及反应过程相关联。
在铅、氧化铅、硫酸水溶液构成的铅酸蓄电池中,铅是产生并输送电子的一极,氧化铅是获得电子的一极,两个电极在硫酸水溶液两端电极间产生电压。如果用导线把两个电极连起来,电子就会从铅通过导线流到氧化铅,硫酸水溶液中氢离子从铅那一端通过硫酸水溶液流到氧化铅。
电化学一氧化碳传感器是一个化学电池即CO燃料电池。其中:CO是提供电子的一极(工作电极),氧气是获得电子的一极,硫酸水溶液是电解质。
和铅酸蓄电池最大的不同是电极材料不同,电化学气体传感器(co)电极材料是气体,铅酸蓄电池是固体。电化学气体传感器的电极叫气体电极。电化学一氧化碳传感器中,工作电极CO作为供电子的一极,只有CO和硫酸水溶液触是无法进行的电子释放、收集和传导的。
其一,CO完成提供电子的过程需要条件,即在电催化条件下降低CO提供电子的难度。实践中这个条件由多孔铂电极(或其它电催化导电电极)提供。
其二,CO提供的电子需要导体收集后传导,也由多孔铂电极完成。
同理,作为对电极的氧气电极亦需要有多孔铂电极协助获得电子,铂电极实际上是反应平台。
其一,需要铂电极有稳定的多孔结构,孔的数量足够多,硫酸水溶液进到孔里,CO (或氧气)也能进到孔里,在气(CO)-固(pt)-液(硫酸水溶液中的水)共同接触的位置即三相界面完成电子提供。
因此,三相界面如何在硫酸长期浸泡、电化学反应冲击、电泳驱动下保持稳定,是可靠精确传感的核心。
其二,硫酸水溶液要稳定,不挥发,不吸水、不泄漏。任何硫酸水溶液的质量变化都会导致传感器内部压力的变化,进而引起三相界面的变化。
其三,由封装、材料物理特性决定的电极和硫酸水溶液接触应力要稳定不变。
目前电化学传感器的主要问题基本源于上述因素。电化学传感器最核心的技术及工艺之一是如何构建孔的物理结构合理稳定可靠的电极,它和灵敏度、响应恢复、寿命、温度特性密切相关。之二是封装。
文章来源于网络,若有侵权,请联系我们删除。